Principal Machine Learning Engineer en DISNEY Skip Navigation
The Walt Disney Company. Be you. Be here. Be part of the story.

Be Part of the Story

Principal Machine Learning Engineer

Aplicar ahora Aplique más tarde Job ID 10106487 Ubicación San Francisco, California, Estados Unidos / Nueva York, Nueva York, Estados Unidos / Seattle, Washington, Estados Unidos Business Disney Entertainment & ESPN Technology Fecha de publicación 04/12/2024

Detalles del empleo:

Disney Entertainment & ESPN Technology

On any given day at Disney Entertainment & ESPN Technology, we’re reimagining ways to create magical viewing experiences for the world’s most beloved stories while also transforming Disney’s media business for the future. Whether that’s evolving our streaming and digital products in new and immersive ways, powering worldwide advertising and distribution to maximize flexibility and efficiency, or delivering Disney’s unmatched entertainment and sports content, every day is a moment to make a difference to partners and to hundreds of millions of people around the world.

A few reasons why we think you’d love working for Disney Entertainment & ESPN Technology

  • Building the future of Disney’s media business: DE&E Technologists are designing and building the infrastructure that will power Disney’s media, advertising, and distribution businesses for years to come.

  • Reach & Scale: The products and platforms this group builds and operates delight millions of consumers every minute of every day – from Disney+ and Hulu, to ABC News and Entertainment, to ESPN and ESPN+, and much more.

  • Innovation: We develop and execute groundbreaking products and techniques that shape industry norms and enhance how audiences experience sports, entertainment & news.

Job Summary:

You will work on creating the best-in-class Recommendations & Discovery experiences for hundreds of millions of customers across Disney+, Hulu, ABC and ESPN.  You will collaborate with Data Science/ML and Product teams to innovate on, develop and operate Recommendation Systems at scale.

This is an Individual Contributor leadership role in content recommendations. You will be expected to lead recommendation and personalization algorithm research, development, and optimization for our streaming app personalization across international regions we serve, and to coordinate requirements and manage stakeholder expectations with Product, Engineering, and Editorial teams. You will be expected to help meet KPIs for product areas and to set and meet deadlines for external and internally facing tools, such as offline evaluation tools for pre-production algorithms. As an IC leader, you will also be responsible for helping to set the roadmap for algorithmic work — not only for how to approach product requests for new recommendation features, but for helping to drive larger company objectives in the areas of personalization and content recommendation.

Responsibilities and Duties of the Role:

  • Experience with algorithm and ML model implementation & operation at scale, for consumer facing experiences

  • Ability to deep dive into individual components & systems as well as understand overall framework/architecture

  • Passion for consumer facing experiences

  • Analytical, data driven and pragmatic approach

  • Excellent written and oral communication skills

  • Collaborative, self-starter

Required Education, Experience/Skills/Training:

  • In-depth understanding of deep learning technology in recommendation system or NLP fields

  • Proficiency in at least one of the following deep learning frameworks, tensorflow, pytorch

  • Experience building and deploying full stack ML pipelines: data extraction, data mining, model training, feature development, testing, and deployment

  • Track record of deploying and maintaining pipelines (AWS, Docker, Airflow) and in engineering big-data solutions using technologies like Databricks, S3, and Spark

  • Experience with cloud services in a production environment (particularly AWS)

  • Understanding of statistical concepts (e.g., hypothesis testing, regression analysis)

  • Ability to articulate the usage and behavior of models and algorithms to both technical and non-technical audiences

Preferred qualification:

  • MS or PhD in statistics, math, computer science, or related quantitative field

  • Developing reporting dashboards such as Tableau or Looker

  • Production experience with developing content recommendation algorithms at scale and familiar with metadata management, data lineage, and principles of data governance

  • Deep understanding in personalization challenges in homepage experience and proven records of developing effective solutions

Experience with:

  • 10+ years of related analytical experience

  • 8+ years of experience in developing highly scalable machine learning products

  • 8+ years writing production-level, scalable Python codes

Required Education  

  • Bachelor’s degree in Computer Science, Information Systems, Software, Electrical or Electronics Engineering, or comparable field of study, and/or equivalent work experience

#DISNEYTECH


The hiring range for this position in Los Angeles, CA is $202,900 - $272,100 per year, in San Francisco, CA $222,200 - $297,900 and in New York & Seattle, WA is $212,600 - $285,100 per year. The base pay actually offered will take into account internal equity and also may vary depending on the candidate’s geographic region, job-related knowledge, skills, and experience among other factors. A bonus and/or long-term incentive units may be provided as part of the compensation package, in addition to the full range of medical, financial, and/or other benefits, dependent on the level and position offered.

Información adicional:

DISNEYTECH


Acerca de Disney Entertainment & ESPN Technology:

Disney Entertainment y ESPN Technology (DE&E Technology) proporcionan la columna vertebral tecnológica y el desarrollo de productos para las dos unidades de negocio de medios de Disney, a la vez que ayudan a mantener a la compañía a la vanguardia de la innovación, lo que le permite aprovechar continuamente la tecnología para mejorar la narrativa y la creatividad, a la vez que ofrece escalabilidad, flexibilidad y eficiencia para sus negocios.

Acerca de The Walt Disney Company:

The Walt Disney Company, junto con sus subsidiarias y afiliadas, es una empresa internacional diversificada líder en entretenimiento familiar y medios de comunicación que incluye tres segmentos comerciales principales: Disney Entertainment, ESPN y Disney Experiences. Desde sus humildes comienzos como estudio de dibujos animados en la década de 1920 hasta su reconocido nombre en la industria del entretenimiento en la actualidad, Disney continúa con orgullo su legado de crear historias y experiencias de clase mundial para toda la familia. Las historias, los personajes y las experiencias de Disney llegan a consumidores e invitados de todos los rincones del mundo. Con operaciones en más de 40 países, nuestros empleados y miembros del elenco trabajan juntos para crear experiencias de entretenimiento que sean apreciadas a nivel local y global.

Este puesto es en Disney Streaming Technology LLC , que forma parte de una empresa comercial que denominamos Disney Entertainment & ESPN Technology.

Disney Streaming Technology LLC es un empleador que ofrece igualdad de oportunidades. Los solicitantes recibirán consideración para el empleo independientemente de su raza, religión, color, sexo, orientación sexual, género, identidad de género, expresión de género, nacionalidad, ascendencia, edad, estado civil, condición de militar o veterano, afección médica, información genética o discapacidad, o cualquier otro fundamento prohibido por la ley federal, estatal o local. Disney defiende un entorno empresarial donde las ideas y decisiones de todas las personas nos ayudan a crecer, innovar, crear las mejores historias y ser relevantes en un mundo en constante evolución.

Aplicar ahora Aplique más tarde

MIRE NUESTROS TRABAJOS

Regístrese para recibir nuevas alertas de trabajo e información de la compañía según sus preferencias

Specify LocationsSeleccione una categoría a partir de la lista. Haga su elección a partir de las opciones propuestas. Por último, haga clic en "Añadir" para crear su alerta.